4730 Mechanics 3

1	$\begin{aligned} & 0.4\left(3 \cos 60^{\circ}-4\right)=-\mathrm{I} \cos \theta \\ & 0.4\left(3 \sin 60^{\circ}\right)=\mathrm{I} \sin \theta \\ & \\ & \\ & {[\tan \theta=-1.5 \sqrt{3} /(1.5-4) ;} \\ & \left.\mathrm{I}^{2}=0.4^{2}\left[(1.5-4)^{2}+(1.5 \sqrt{3})^{2}\right]\right] \\ & \theta=46.1 \text { or } \mathrm{I}=1.44 \\ & \\ & \mathrm{I}=1.44 \text { or } \theta=46.1 \end{aligned}$	A1 M1 A1ft [7]	For using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction SR: Allow B1 (max 1/3) for $3 \cos 60^{\circ}-4=-\mathrm{I} \cos \theta \text { and } 3 \sin 60^{\circ}=\mathrm{I} \sin \theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow following SR case) ft incorrect θ or I ; allow for θ (only) following SR case.
	Alternatively $\begin{aligned} & \mathrm{I}^{2}=1.2^{2}+1.6^{2}-2 \times 1.2 \times 1.6 \cos 60^{\circ} \quad \text { or } \\ & { }^{\prime} \mathrm{V}^{\prime 2}=3^{2}+4^{2}-2 \times 3 \times 4 \cos 60^{\circ} \\ & \mathrm{I}=1.44 \\ & \frac{\sin \theta}{3(\text { or } 1.2)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { or } \\ & \frac{\sin \alpha}{4(\text { or } 1.6)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { and } \theta=120-\alpha \\ & \theta=46.1 \end{aligned}$	M1 A1 M1 A1 M1 A1ft A1 [7]	For use of cosine rule For correct use of factor 0.4 (= m) For use of sine rule α must be angle opposite 1.6; ($\alpha=73.9$) ft value of I or ' V '
2	$\begin{aligned} & 2 a+3 b=2 \times 4 \\ & b-a=0.6 \times 4 \\ & {[2(b-2.4)+3 b=8]} \\ & b=2.56 \\ & v=2.56 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1ft [7]	For using the principle of conservation of momentum For using NEL For eliminating a $\mathrm{ft} \mathrm{v}=\mathrm{b}$
3(i)	$\begin{aligned} & 2 \mathrm{~W}\left(\mathrm{a} \cos 45^{\circ}\right)=\mathrm{T}(2 \mathrm{a}) \\ & \mathrm{W}=\sqrt{2} \mathrm{~T} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	For using 'mmt of $2 \mathrm{~W}=\mathrm{mmt}$ of T ' AG
(ii)	Components (H, V) of force on BC at B are $\mathrm{H}=-\mathrm{T} / \sqrt{2}$ and $\mathrm{V}=\mathrm{T} / \sqrt{2}-2 \mathrm{~W}$ $\mathrm{W}(\mathrm{a} \cos \alpha)+\mathrm{H}(2 \mathrm{a} \sin \alpha)=\mathrm{V}(2 \mathrm{a} \cos \alpha)$ $[\mathrm{W} \cos \alpha-\mathrm{T} \sqrt{2} \sin \alpha=\mathrm{T} \sqrt{2} \cos \alpha-4 \mathrm{~W} \cos \alpha]$ $\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha$ $\tan \alpha=4$	B1 M1 A1 M1 A1ft A1 [6]	For taking moments about C for BC For substituting for H and V and reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$


	```Alternatively for part (ii) anticlockwise mmt = \(\mathrm{W}(\mathrm{a} \cos \alpha)+2 \mathrm{~W}\left(2 \mathrm{a} \cos \alpha+\mathrm{a} \cos 45^{\circ}\right)\) \(=\mathrm{T}\left[2 \mathrm{a} \cos \left(\alpha-45^{\circ}\right)+2 \mathrm{a}\right]\) \([5 \mathrm{~W} \cos \alpha+\sqrt{2} \mathrm{~W}=\) \(\mathrm{T}(\sqrt{2} \cos \alpha+\sqrt{2} \sin \alpha)+2]\) \(\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha\) \(\tan \alpha=4\)```	M1   A1   A1   M1   A1ft   A1   [6]	For taking moments about C for the whole   For reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$
4(i)	$\begin{aligned} & {\left[-0.2\left(\mathrm{v}+\mathrm{v}^{2}\right)=0.2 \mathrm{a}\right]} \\ & {\left[\mathrm{v} \mathrm{dv} / \mathrm{dx}=-\left(\mathrm{v}+\mathrm{v}^{2}\right)\right.} \\ & {[1 /(1+\mathrm{v})] \mathrm{dv} / \mathrm{dx}=-1} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	For using Newton's second law For using $\mathrm{a}=\mathrm{v} \mathrm{dv} / \mathrm{dx}$ AG
(ii)	$\begin{aligned} & \ln (1+v)=-x(+C) \\ & \ln (1+v)=-x+\ln 3 \\ & {\left[(1+d x / d t) / 3=e^{-x} \rightarrow d x / d t=3 e^{-x}-1\right.} \\ & {\left[-e^{x} /\left(3-e^{x}\right)\right] d x / d t=-1} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{array}$	For integrating   For transposing for v and using $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ AG
(iii)	$\begin{aligned} & {\left[\ln \left(3-\mathrm{e}^{\mathrm{x}}\right)=-\mathrm{t}+\ln 2\right]} \\ & \ln \left(3-\mathrm{e}^{x}\right)=-t+\ln 2 \\ & \text { Value of } \mathrm{t} \text { is } 1.96(\text { or } \ln \{2 \div(3-e)\} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	For integrating and using $\mathrm{x}(0)=0$
5(i)	$\begin{aligned} & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.3^{2}\right) /(2 \times 1.6) \\ & \text { and gain in PE }=1.5 \times 4 \\ & \mathrm{v}=0 \text { at } \mathrm{B} \text { and loss of } \mathrm{EE}=\text { gain in PE }(=6) \\ & \rightarrow \text { distance } \mathrm{AB} \text { is } 4 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$ and $\mathrm{PE}=\mathrm{Wh}$   For comparing EE loss and PE gain AG
(ii)	$\begin{aligned} & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.02^{2}\right) /(2 \times 1.6) \\ & \quad\left(\text { or } 120\left(0.3^{2}-0.02^{2}\right) /(2 \times 1.6)\right) \\ & \text { Gain in } \mathrm{PE}=1.5(2.1-1.6-0.02) \\ & \quad \text { (or } 1.5(1.9+1.6+0.02) \text { loss) } \\ & {[\mathrm{KE} \text { at max speed }=9.36-0.72} \\ & \quad \text { (or } 3.36+5.28)] \\ & 1 / 2(1.5 / 9.8) \mathrm{v}^{2}=9.36-0.72 \text { en } \\ & \text { Maximum speed is } 10.6 \mathrm{~ms}^{-1} \end{aligned}$	M1   A1   B1ft      B1ft      M1   A1   A1   $[7]$	For using $T=m g$ and $T=\lambda x / L$   ft incorrect e only   ft incorrect e only   For using KE at max speed $=$ Loss of EE - Gain (or + loss) in PE
	First alternative for (ii) x is distance AP $\begin{array}{r} {\left[1 / 2(1.5 / 9.8) v^{2}+1.5 x+120(0.5-x)^{2} / 3.2=\right.} \\ \left.120 \times 0.5^{2} / 3.2\right] \end{array}$   KE and PE terms correct   EE terms correct $\begin{aligned} & \mathrm{v}^{2}=470.4 \mathrm{x}-490 \mathrm{x}^{2} \\ & {[470.4-980 \mathrm{x}=0]} \\ & \mathrm{x}=0.48 \end{aligned}$   Maximum speed is $10.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using energy at $\mathrm{P}=$ energy at A   For attempting to solve $\mathrm{dv}^{2} / \mathrm{dx}=0$

physicsandmathstutor.com

	$\begin{aligned} & \text { Second alternative for (ii) } \\ & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & {[1.5-120(0.02+\mathrm{x}) / 1.6=1.5 \ddot{x} / \mathrm{g}]} \\ & \\ & \mathrm{n}=\sqrt{490} \\ & \mathrm{a}=0.48 \end{aligned}$   Maximum speed is $10.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using $T=m g$ and $T=\lambda x / L$   For using Newton's second law For obtaining the equation in the form $\ddot{x}=-n^{2} x$, using ( $A B-L-e_{\text {equil }}$ ) for amplitude and using $\mathrm{v}_{\text {max }}=$ na.
6(i)	$\begin{aligned} & \text { PE gain by } \mathrm{P}=0.4 \mathrm{~g} \times 0.8 \sin \theta \\ & \text { PE loss by } \mathrm{Q}=0.58 \mathrm{~g} \times 0.8 \theta \\ & \\ & 1 / 2(0.4+0.58) \mathrm{v}^{2}=\mathrm{g} \times 0.8(0.58 \theta-0.4 \sin \theta) \\ & \mathrm{v}^{2}=9.28 \theta-6.4 \sin \theta \end{aligned}$	B1   B1   M1   A1ft   A1   [5]	For using KE gain = PE loss AEF
(ii)	$\begin{aligned} & 0.4 \mathrm{~g} \sin \theta-\mathrm{R}=0.4 \mathrm{v}^{2} / 0.8 \\ & {[0.4 \mathrm{~g} \sin \theta-\mathrm{R}=4.64 \theta-3.2 \sin \theta]} \\ & \mathrm{R}=7.12 \sin \theta-4.64 \theta \end{aligned}$	M1   A1   M1   A1   [4]	For applying Newton's second law to P and using $a=v^{2} / r$   For substituting for $\mathrm{v}^{2}$ AG
(iii)	$R(1.53)=0.01(48 \ldots), R(1.54)=-0.02(9 \ldots)$ or simply $\mathrm{R}(1.53)>0$ and $\mathrm{R}(1.54)<0$ $\mathrm{R}(1.53) \times \mathrm{R}(1.54)<0 \rightarrow 1.53<\alpha<1.54$	M1   A1   M1   A1   [4]	For substituting 1.53 and 1.54 into $\mathrm{R}(\theta)$   For using the idea that if $\mathrm{R}(1.53)$ and $R(1.54)$ are of opposite signs then $R$ is zero (and thus P leaves the surface) for some value of $\theta$ between 1.53 and 1.54 . AG
7(i)	$\begin{aligned} & \mathrm{T}_{\mathrm{AP}}=19.6 \mathrm{e} / 1.6 \text { and } \mathrm{T}_{\mathrm{BP}}=19.6(1.6-\mathrm{e}) / 1.6 \\ & 0.5 \mathrm{~g} \sin 30^{\circ}+12.25(1.6-\mathrm{e})=12.25 \mathrm{e} \\ & \text { Distance AP is } 2.5 \mathrm{~m} \end{aligned}$	M1   A1   M1   A1ft   A1   [5]	For using $\mathrm{T}=\lambda \mathrm{e} / \mathrm{L}$   For resolving forces parallel to the plane
(ii)	Extensions of AP and BP are $0.9+x$ and 0.7 - x respectively $\begin{array}{\|l\|} 0.5 \mathrm{~g} \sin 30^{\circ}+19.6(0.7-\mathrm{x}) / 1.6 \\ \ddot{x}=-49 \mathrm{x} \end{array}-19.6(0.9+\mathrm{x}) / 1.6=0.5 \ddot{x}$   Period is 0.898 s	B1   B1ft   B1   M1   A1   [5]	AG   For stating $\mathrm{k}<0$ and using $\mathrm{T}=2 \pi / \sqrt{-k}$
(iii)	$\begin{aligned} & 2.8^{2}=49\left(0.5^{2}-x^{2}\right) \\ & x^{2}=0.09 \\ & x=0.3 \text { and }-0.3 \end{aligned}$	M1   A1ft   A1   A1ft   [4]	For using $\mathrm{v}^{2}=\omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)$ where $\omega^{2}=-\mathrm{k}$ ft incorrect value of k   May be implied by a value of $x$ ft incorrect value of k or incorrect value of $\mathrm{x}^{2}$ (stated)

